Lac repressor binding to DNA linking structure and thermodynamics Organization of the genes regulated by Lac repressor, a transcription repressor protein in the bacterium E. coli

Molecular structure of E. coli lac repressor dimer

Molecular structure of E. coli lac repressor tetramer

Lac repressor binding sites

	1				5					10	,	ŧ				15					20	
01	А	λ	Т	Т	G	т	G	А	G	С	1	3	G	λ	T	A	λ	С	A	A	т	Τ
	т	Т	A	А	С	A	C	т	C	G	1	2	C	т	A	т	т	G	T	T	A	λ
-	Α	λ	А	Т	G	т	G	A	G	С	4	з	Α	G	Τ	Α	λ	С	A	A	С	С
02	т	т	т	А	C	A	C	т	C	G	4	2	т	С	А	т	т	G	т	T	G	G
	G	G	с	λ	G	т	G	A	G	С	4	3	с	λ	A	С	G	С	λ	A	т	Τ
03	C	C	G	т	C	A	C	т	C	G	¢	~	G	т	т	G	C	G	T	т	A	λ
Gund	A	λ	т	т	G	т	G	А	G	С			G	С	т	С	λ	с	A	А	т	Τ
SynL	т	т	A	А	С	A	C	т	С	G			С	G	Α	G	т	G	т	т	A	λ
SumB	A	Α	т	т	G	т	т	A	т	С	С	G	G	А	т	A	A	C	А	А	т	т
Synn	т	т	А	А	С	А	λ	т	А	G	G	С	С	т	А	т	т	G	т	т	А	λ

Lac repressor head piece (1-62) bound to SynL sequence

Figure 3. NMR solution structure of wild-type *lac* HP62 bound to the SymL operator (PDB access code 1CJG).²² The two hinge helices (residues 50–58) bind to the minor groove of the SymL operator and bend significantly the DNA. On the basis of this structure, Val52 (green) was later replaced by a cysteine residue, so that a disulfide bond could link the two subunits, to yield a covalently linked dimeric lac that bound the natural operator *O1* with very high affinity.³⁵

Lac repressor head piece (1-62) bound to the natural operator O1

Figure 5. Three-dimensional structure of the dimeric *lac* DBD complexed to its natural *O1* operator (PDB accession code 1L1M).⁴¹ A ribbon diagram of the protein is shown bound to the solvent-accessible surface of the operator. The left and right *lac* headpiece subunits are dark blue and dark orange, respectively. The major and minor grooves of the operator are light blue, and the ribose-phosphate backbone is gray. The side chains of Leu56 (shown in yellow) of both monomers protrude into the minor groove of the *O1* operator and introduce a \sim 36° kink centered between base pairs 10 and 11.

Binding titrations of symmetrical operator site with Lac repressor measured by filter binding assay

The influence of binding one ligand (ion) on binding of another ligand (protein) to the DNA is referred to as binding "linkage"

Wyman Linkage Relationship J. Wyman (1964) Adv. Protein Chem. 19, 223 9.0 E4, TATATATA $\frac{\partial \log K}{\partial \log x} = \Delta \overline{X}$ 8.5 AdMLP. 8.0 TATAAAAG ¥ **6** 7.5 Electrostatic (Coulombic) Interactions Interaction Energy = $\frac{Z_a \cdot Z_b}{D}$ 7.0 6.5 $-\Delta M = 3.5 \pm 0.3$ (E4) Cation displacement 3.4 ± 0.2 (ML) 60 $\frac{\partial \log K}{\partial \log[M^+]} = \Delta \overline{M}^+ = \varphi \overline{z}$ -1.4 -1.2 -0.6 -1.0 -0.8 -0.4 log [KCl] specific binding of TBP to different promoter sequences fraction of charge neutralized = 0.88number of salt bridges between DNA phosphates and positive amino acids

Including the binding of ions in the reaction

Upon binding to the DNA *D* the protein *P* interacts with *n* phosphates so that $m = n \cdot \psi$ cations M⁺ are displaced:

$$P + D \stackrel{\longrightarrow}{\longleftarrow} PD + mM^{+} \qquad \qquad K = \frac{PD \cdot \left[M^{+}\right]^{m}}{P \cdot D}$$

However, we derive K from the concentrations of P, D and PD, thus

$$K_{obs} = \frac{\left[PD\right]}{\left[P\right] \cdot \left[D\right]} = \frac{K}{\left[M^{+}\right]^{m}}$$

$$\log K_{obs} = \log K - m \log \left[M^+ \right]$$

Lac repressor binding involves 6-7 (specific) and 11 (nonspecific) charge-charge interactions

The temperature dependence of the binding constants reveals ΔH and ΔS in a van't Hoff plot if ΔH and ΔS are independent of temperature

From the slope of ln K_{eq} vs. 1/T (usually from 0 to 40 °C) one can determine the ΔH and from extrapolation also ΔS . Is the van't Hoff plot curved then ΔH is temperature dependent and it can be determined from the derivative.

The heat capacity C_P describes the temperature dependence of ΔH and ΔS

Relation between ΔC_P , ΔG and K_{eq} for binding

For two characteristic temperature T_H and T_S with

$$\Delta H(T_H) = 0 \text{ and } \Delta S(T_S) = 0 \implies$$

$$\Delta H(T) = \Delta C_{\rm P} \cdot (T - T_{\rm H})$$

$$\Delta S(T) = \Delta C_{\rm P} \cdot \ln \left(\frac{T}{T_{\rm S}} \right)$$

$$\Delta G(T) = \Delta C_{\rm P} \cdot (T - T_{\rm H}) - T \cdot \Delta C_{\rm P} \cdot \ln \left(\frac{T}{T_{\rm S}}\right)$$

$$\ln K_{eq} = \frac{\Delta C_{\rm P}}{R} \cdot \left[\frac{T_H}{T} - 1 - \ln \left(\frac{T_S}{T} \right) \right]$$

ΔC_p vs ΔA_{np} for protein folding

There is a linear correlation between the heat capacity change for protein unfolding and the buried non-polar surface area.

This relationship is identical to that seen for the transfer of hydrocarbons from aqueous solution to the pure liquid phase

FIGURE 3: Standard heat capacity changes $(\Delta C_{p,fold}^{\bullet})$ for the process of protein folding as a function of the reduction in water-accessible nonpolar surface area accompanying folding (ΔA_{np}) . The denatured state is assumed to be in the extended β -form. The solid line is the weighted least-squares fit obtained by using set 1 radii (O) to calculate ΔA_{np} ; the dashed line is the fit obtained by using set 2 radii (\bullet). Where the two values of ΔA_{np} agree within the size of the data point, only one point (\bullet) is plotted.

From Livingstone JR, Spolar RS, Record MT Jr. Biochemistry. 1991 Apr 30;30(17):4237-44

Temperature dependence of Kd for specific/nonspecific binding of lac repressor => less induced folding in the unspecific complex

O^{sym} Fragment:

⁵ GTAGTGGCGA<u>AATTGTGAGCGCTCACAATT</u>CGTTTGGCCG³

Variant Operators:

Nonoperator Fragment:					
O4A5C	AATTG <u>CA</u> AGCGCT <u>TG</u> CAATT				
O2C	AATTGCGAGCGCTCGCAATT				
O4A5A	AATTG <u>AA</u> AGCGCT <u>TT</u> CAATT				
O2Y	AATTGAGAGCGCTCTCAATT				
O4A	AATTGT <u>A</u> AGCGCT <u>T</u> ACAATT				

NOD TCTAAGAGTTACTCTATCCG

Temperature dependence of Kd for specific binding of Lacl repressor => induced folding

12.0 (b) 11.5 sym Ы 11.0 log₁₀ 10.5 10.0 3.7 3.1 3.8 3.6 3.5 3.2 3.4 3.3 1000/T (K⁻¹)

specific binding to operator

The hinge region (50-62 in red) of Lac-DBD is folded only in the specific complex with DNA

straight DNA

curved DNA

Specific (left) and nonspecific (right) protein-DNA contacts of Lac-DBD repressor with DNA

Schematic models of the specific (RO) and nonspecific (RD) complexes of Lac repressor

- Small arrows denote specific hydrogen bonding in the protein binding site. That are established in the specific complex upon folding of the hinge region

- Plus signs (+) denote basic side chains located in and around the same site. In the "down" position these groups are in "interactive contact" with the underlying dsDNA, and in the "up" position these contacts are broken.

- RO complex: 7 hydrogen bonds with the base pairs of the DNA operator site, only 6 electrostatic interactions with the charged DNA backbones.

- RD complex: 11 charge-charge interactions with the dsDNA backbone, but all the specific interactions with the DNA base pairs have been "withdrawn."

- curvature of DNA in the specific complex